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Determination of multicanonical weight based on a stochastic model of sampling dynamics
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Based on the stochastic interpretation of the sampling process modeled by a Langevin equation, we present
an effective iteration scheme to determine the weight in multicanonical molecular dynamics. Our method
enables an automatic determination of the weight producing a uniform energy sampling via an iterative
cancellation of the deterministic force in a Langevin equation. The deterministic force has been calculated from
the energy trajectory by identifying the moments of the transition probability of a Fokker-Planck equation
associated with a Langevin equation. The intimate relationship between the sampling process and the stochastic
dynamics has been verified by applying the iteration scheme to a helix-coil transition of the 8-polyalanine
system in a gas phase.
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I. INTRODUCTION

During the last decade, several sampling algorithms h
been proposed to overcome quasiergodic problem occur
in the simulation of rough energy landscape@1–6#. Since the
potential energy surfaces of the complex systems, suc
protein folding@7#, cluster melting@8#, and spin glasses@9#,
are characterized by numerous local minima separated
high energy barriers, conventional Monte Carlo~MC! or mo-
lecular dynamics~MD! simulation fails to sample broad re
gions of thermally accessible phase space due to the trap
in one of the local energy basins. One effective way to a
viate this quasiergodicity is to modify the Boltzmann weig
so that the simulation generates a random walk on the en
space, allowing the system to cross high energy barr
more frequently.

The multicanonical ensemble method@1# or an equivalent
entropic sampling method@2# combined with MC simulation
has been proved to be very effective in studying the fi
order phase transitions of lattice spin systems@10# and fold-
ing problems of small peptide systems@11#. Recently, the
multicanonical algorithm has been applied to MD by usin
force scaling method in the constant temperature@12# and
Nose-Hoover thermostat@13#. Once the multicanonical sam
pling is achieved with high statistics, the reweighting pr
duces a canonical distribution at an arbitrary tempera
with a considerable enhancement of the sampling efficie
@14#. In contrast to the canonical ensemble, the weight fac
of the multicanonical ensemble is not knowna priori and has
to be determined by an iterative procedure since it is
versely proportional to the density of state, i.e.,V(E). How-
ever, determination of the exact weight is very difficult a
nontrivial for a complex system because of the exponen
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growth of the density of state with respect to the size of
system@16#. Therefore, it is very demanding to develop a
efficient method to get the multicanonical weight.

In this paper, we propose one effective iteration schem
determine the weight in multicanonical MD. Our method
based on the observation that the sampling process of
can be considered as a stochastic diffusion on the en
space, which is modeled by a Langevin equation describ
an overdamped Brownian motion@15#. Within the stochastic
formulation the multicanonical sampling corresponds to
free Brownian motion whose dynamics is driven by on
thermal fluctuations without any deterministic force. Thu
the iterative procedure modifying the weight is equivalent
the dynamical process approaching a free Brownian mo
through an iterative cancellation of the deterministic forc
Based on this analogy, a different iteration scheme has b
developed for the derivative of the weight, which is iden
fied with the deterministic force in our stochastic model. T
iteration scheme has been further transformed to a recur
formula for the effective temperature, allowing an automa
calculation of the weight without any intervention in th
simulation process.

The deterministic force plays a critical role in our stocha
tic formulation of the sampling process. In contrast to t
conventional iteration scheme biasing the weight@12#, our
method utilizes a force biasing to attain the uniform sa
pling. In the present study, the deterministic force has b
calculated by computing the drift and diffusion coefficien
of a Fokker-Planck equation associated with a Lange
equation. We showed that the characteristic dynamics of
sampling process can be extracted from the time series
of MD by estimating the stochastic differential equation
the form of a Fokker-Planck equation. The performance
our method has been validated by applying it to a helix-c
transition of 8-polyalanine@(Ala)8# in a gas phase.

In Sec. II, the basic theory on the sampling process
©2003 The American Physical Society10-1
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been discussed in terms of the stochastic differential equa
~SDE!. The physical implication of the proposed iteratio
scheme has been explained within the stochastic formula
In Sec. III, the effectiveness of our method has been ex
ined by using the multicanonical simulation of a helix-co
transition of the (Ala)8 system. Detailed numerical resul
and discussions are presented with the stochastic interp
tion of the sampling dynamics. The conclusion and a su
mary are added in Sec. IV.

II. THEORETICAL FORMULATION

A. Stochastic model of the sampling process

Let us start by briefly reviewing the conventional mul
canonical ensemble method in MD. The uniform sampling
a multicanonical ensemble can be obtained by weigh
each state of an energyE with weight Wmc @1,2# as

Wmc~E!51/V~E!5e2b0a(E), ~1!

whereb051/kBT0 anda(E) is the multicanonical potential
In Eq. ~1!, the sampling of the multicanonical ensemble d
fined by weightWmc has been considered as the canoni
sampling associated with the effective potentiala(E). Then,
the energy trajectory in the multicanonical ensemble can
generated by performing the constant temperature MD aT0
with a scaled Newton’s equation@12#

ṗi52
]a~E!

]qi
5

]a~E!

]E
f i5n~E!f i , ~2!

whereqi , pi , and f i correspond to the coordinate, mome
tum, and force of the particlei on the original potential en
ergy surfaceE, respectively. The derivative of the weigh
i.e., n(E) is the force scaling function characterizing th
multicanonical ensemble. SinceV(E) is not knowna priori,
the multicanonical potentiala(E) has to be determined b
using an iterative procedure with the update scheme of R
@12#:

a i 11~E!5a i~E!1
1

b0
ln Pi~E!, ~3!

where a i and Pi are the multicanonical potential and th
energy distribution in thei th simulation, respectively. The
simulation is iterated by substitutingn i 11 in Eq. ~2! until the
obtained P(E) is reasonably flat within a certain energ
range.

The SDE governing the sampling process in the multi
nonical ensemble can be obtained by considering the p
ability density function~PDF! associated with weightWmc
as @15#

P~E!5V~E!e2b0a(E)/Za5e2b0A(E)/Za , ~4!

whereA(E)5a(E)2T0S(E), S(E) being the microcanoni-
cal entropy defined bykBln V(E). Here,Za is the partition
function defined by*e2b0A(E)dE. The PDF of Eq.~4! is
obtained as a stationary solution of the Langevin equatio
02111
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] tE5G~E!1AkBT0h~ t !, ~5!

where

G~E!52]EA~E!51/T̃S~E!2n~E! ~6!

and T̃S(E)5TS(E)/T0 , TS(E) being the statistical tempera
ture defined in the microcanonical ensemble as@]S/]E#21

@21#. In Eq. ~5!, thermal fluctuations are approximated by
unbiased d-correlated Gaussian white noise wi
^h(t)h(t8)&52d(t2t8). The important observation in Eq
~5! is that the force scaling function in the modified New
ton’s equation is identified with the deterministic forc
driven by the weight in the Langevin equation. The det
ministic forceG(E) has two contributions derived from th
microcanonical entropy and the sampling weight. The form
is the system-dependent quantity, which is not knowna pri-
ori, but the effective forcen(E) can be adjusted by alterin
the multicanonical potentiala(E). Our stochastic model re
veals that the sampling process in the multicanonical
semble can be considered as a stochastic diffusion on
free-energy potentialA(E) composed of the microcanonica
entropy and the weight.

The uniform sampling can be realized from a generat
of a random walk on the energy space when the determin
force G(E) becomes zero by the condition ofa(E)
5T0S(E). Therefore, the iterative correction ofa(E) with
the update scheme of Eq.~3! is equivalent to the dynamica
process of makingG(E)50. Our basic idea is that this itera
tion scheme can be made for the force scaling function
rearranging Eq.~6! as

nS~E!5n~E!1G~E!, ~7!

wherenS(E)51/T̃S(E). If we estimate the deterministic pa
G(E) from the simulation, Eq.~7! can be used to update th
force scaling function. Since the trajectory in the multic
nonical MD is directly related to the force scaling functio
this iteration scheme is expected to be more effective t
the conventional one updating the potentiala(E). Denoting
the stationary solution of Eq. ~5!, i.e., P(E)
5exp@b0*

EG(E8)dE8#, Eq. ~7! can be also obtained by differ
entiating both sides of Eq.~3! as n i 11(E)5n i(E)
1kBT0]Eln Pi(E). However, it should be noted that th
physical implication of Eq.~7! becomes transparent only i
the stochastic formulation of the sampling process.

B. Determination of G„E…

The deterministic force plays a critical role in our stocha
tic formulation, since we employ the force biasing to obta
the uniform distribution in energy space contrary to the co
ventional potential biasing@12#. In our study, the determin
istic force has been calculated by computing the stocha
components of the corresponding Fokker-Planck equa
~FPE! as

] tP52]ED (1)~E!P~E,t !1]E
2D (2)~E!P~E,t !, ~8!
0-2
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where D (1) and D (2) correspond to the drift and diffusio
coefficients. In the Ito interpretation, the coefficients ofD (1)

andD (2) correspond to the deterministic forceG andkBT0,
respectively@17#. When the dynamical process involves
few degrees of freedom, the stochastic components of
FPE can be estimated directly from the time series data
MD @18,19# as

D (k)5
1

k!
lim
D→0

^$E~ t1D!2E~ t !%k&
D

5
1

k!
lim
D→0

^Xk&
D

, ~9!

where ^Xk& denotes the conditional average of the ene
increment at each time step subject toE(t)5E. The right-
hand side of Eq.~9! is the moment of the transition probabi
ity densityW@E8,t1DuE,t# of the FPE, which is given by

W@X,E;D#5
1

A2ps~D!
expH 2

@X1Y~E!#2

2s~D! J , ~10!

whereX5E82E, Y(E)52G(E)D, ands(D)52D (2)D for
an infinitesimal time intervalD @15#. Then, by using the
relation ^Xn&5*2`

` XnW@X,E#dX, the first and second con
ditional averages of the transition probability are calcula
as

^X1&5G~E!D5D (1)D,

^X2&5s~D!1^X1&
252D (2)D1G~E!2D2,

respectively. Notice that in the limiting ofD→0, D (2) ap-
proacheŝ X2&/2D as defined in Eq.~9!. The second-orde
correction with respect toD in ^X2& represents an additiona
spreading of the probability flows due to the drift term b
sides thermal fluctuations. For a finiteD, the estimate of
D (2) becomes fairly bad if we ignore the second-order c
rection with respect toD in ^X2& @19#. With a few algebraic
operations, the deterministic force is obtained by

G~E!52kBT0

^X1&

^X2&2^X1&
2

. ~11!

In actual computations,^Xn& are obtained by taking average
of the nth power of an energy incrementX5E82E at each
energy histogramE.

C. Effective temperature

The inverse of the force scaling function can be int
preted as a temperature scaling factor. For example, le
consider the constant force scaling function for a wh
range of energy asn(E)51/l, l being an arbitrary positive
constant. Sincea(E)5E/l from the relation of Eq.~2!, the
probability density function of Eq.~4! reduces to the canoni
cal PDF at the scaled temperatureT085lT0 as P(E)

;V(E)e2b0a(E)5V(E)e2E/kBT08. In the same limit, the
Langevin equation reduces to
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] tE52j~T08!~E2E08!1•••1AkBT0h~ t ! ~12!

by using the Taylor expansion of

T̃S~E!5l1j~T08!~E2E08!1•••,

where E08 is determined by T̃S(E08)5l and j(T08)
51/(lT08)@]TS /]E#E5E

08
5@lT08CV(T08)#21, CV being the

specific heat of the system. Notice thatE08 becomes identica
to an average energy atT08 in a thermodynamic limit by the
definition of ]ESuE5E

08
51/T08 @21#. Assuming that there is

only one solutionE08 satisfying T̃S(E08)5l, the first-order

truncation ofT̃S gives a typical canonical PDF of the Gaus
ian centered atE08 with a width of s05kBT08

2CV(T08) as

P0~E!5
1

A2ps0

expH 2
~E2E08!2

2s0
J . ~13!

Therefore, by adjusting the value ofl, we can obtain the
canonical sampling at an arbitrary temperature from the m
ticanonical simulation with a fixedT0. It should be noted
that the higher-order terms ofT̃S have to be included in Eq
~12! when the relation ofT̃S(E08)5l may not have a unique
solution such as in the van der Waals loops of finite s
system@20#.

This interpretation can be extended to a continuous va
ing n(E) by introducing the effective temperatureT̃(E)
51/n(E). Even though the original multicanonical samplin
@1,2#, i.e., the biasing of the weight to be coincided wi
V(E), has nothing to do with the temperature scaling,
concept of the effective temperature is very useful in e
plaining the essential dynamics of the multicanonical sa
pling. In the previous study@15#, we showed that the uniform
sampling in the multicanonical ensemble is achieved
transforming a complex free-energy surface into a piecew
multivalleyed landscape structure modulated by a stepw
effective temperature. In terms of the effective temperatu
the multicanonial sampling can be considered as a repe
simulated annealing subject to an energy dependent hea
and cooling schedule modulated byT̃(E) @22#. The iteration
scheme of Eq.~7! can be further transformed to a recursi
formula for the effective temperature

T̃S~E!5
T̃~E!

11G~E!T̃~E!
. ~14!

Notice thatT̃S(E) does not change for the energy region
G(E)50, in which the sampling shows a random wa
driven by only thermal fluctuations in Eq.~5!. On the other
hand, the effective temperature is iteratively modified for t
force biased energy region ofG(E)Þ0.

A detailed procedure of our simulation scheme is outlin
as follows.

~i! Perform the multicanonical simulation at an arbitra
temperatureT0 with an initial effective temperatureT̃0(E)
51 @n0(E)51#.
0-3
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~ii ! By constructing the histogram of the energy differen
X at each energy binE, calculate the conditional averages
^X1& and ^X2&, and determine thei th deterministic force
G i(E) using Eq.~11!.

~iii ! Update the effective temperatureT̃i 11(E) using

T̃i 11~E!55
T̃i~E1

i ! for E<E1
i

T̃i~E!

11G i~E!T̃i~E!
for E1

i <E<E2
i

T̃i~E2
i ! for E>E2

i ,
~15!

where E1
i and E2

i are the lowest and the highest energ
sampled in thei th simulation.

~iv! Repeat steps~i!–~iii ! for a certain number of itera
tions until the flat distribution is obtained. The multicanon
cal sampling with the update scheme of Eq.~15! shows char-
acteristic sampling behaviors depending on the energy ra
The sampling shows a typical random walk forE1

i <E
<E2

i , since the deterministic force for that region has be
canceled byG i 115n i 112(n i1G i)50. On the other hand
the dynamics generates the energy trajectories sampling
canonical ensembles ofT̃i(E1

i ) and T̃i(E2
i ) in both ends of

the sampling region, since the effective temperatures
constant forE<E1

i and E>E2
i , respectively. It should be

noted that the newly sampled energy trajectories in both e
will be used to estimateT̃S in the next iteration step. Thus
our multicanonical MD extends the sampling region via
peated exploratory canonical samplings in the boundary
gions ofE<E1

i andE>E2
i .

III. NUMERICAL COMPUTATIONS AND DISCUSSIONS

A. Stochastic analysis of MD

To examine the performance of our method we applie
to a helix-coil transition of the (Ala)8 system in a gas phas
whose N and C termini were blocked with acetyl a
N-methyl groups, respectively. The detailed characteristic
the helix-coil transition of the polyalanine system have be
studied extensively using the multicanonical Monte Ca
simulations by Hansmann and co-workers@23#. Recently, the
multicanonical MC has been further extended to larger s
tems beyond the small peptides@24#. In this study, MD simu-
lation was performed by the programPRESTO @25# and the
force-field parameters were taken from the all-atom vers
of AMBER @26# with a 1-fs time step, no cutoff, andSHAKE

constraint. To show an applicability of Eq.~11!, we first cal-
culate G(E) as a function of the reduced energy (E
2E0)/s0 for the canonical sampling atT05300 K. The
PDF shows a typical Gaussian shape centered at the ave
energyE0. The deterministic force represented by a so
line in Fig. 1~a! is greater~smaller! than zero forE,E0 (E
.E0), which leads to a bias of the sampling towardE0. The
linear behavior ofG(E) around the average energyE0 is a
characteristic feature of the canonical sampling governed
the Ornstein-Uhlenbeck stochastic process@17#. But, we
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found that the deterministic force computed by Eq.~11!
shows a slight deviation from dotted open square which
obtained by the derivative of the PDF. Even though the d
ference is small, the probability distribution might show
significant difference due to the accumulation of the bias
G(E) as the iteration proceeds.

This gives rise to a question about the validity of o
basic assumption of Eq.~5!. To check it we plot the condi-
tional averagê X1& ands(D) for the same simulation dat
in Fig. 1~b!, which are supposed to be2j(T0)D(E2E0)
and 2kBT0D, respectively, for a sufficiently small time ste
D in a canonical ensemble. If we assume thatD is a constant
as usual in MD,̂ X1& shows a consistent linear relationsh
with respect to the energy. But,s(D) shows an energy de
pendence contrary to the expectation of our stochastic mo
The energy dependence ofs(D) implies that the stochastic
dynamics is driven by a multiplicative thermal noise. How
ever, it should be emphasized that this problem is due to
size of the system, since the thermostat is not effective
produce a canonical ensemble in a small system. Actua
the value ofs(D) in a large system composed of (Ala)8 in

FIG. 1. ~a! The deterministic forcesG(E) of the canonical sam-
pling of (Ala)8 in a gas phase atT05300 K. For comparison, the
probability distribution is also plotted by dashed filled circles.E0

511.7 kcal/mol ands056.16. ~b! The conditional averagêX1&
and the variances(D) of the transition probability of Eq.~10!.
0-4



sta

th
a

ty
th

en
the

-

lex
-

ive
the
ls
ical
lgo-
d

.

tical
ht

of

al
rgy

it-
een

re

we

-to-
)

m-

nge

-

pi-

-

DETERMINATION OF MULTICANONICAL WEIGHT . . . PHYSICAL REVIEW E 68, 021110 ~2003!
explicit water molecules shows a constant behavior for
tistically important energy range as in Fig. 2~b!.

Our present formulation can be extended to include
stochastic process driven by a multiplicative noise as long
the sampling dynamics of MD obeys the Markov proper
When the diffusion coefficient in the FPE is not constant,
stationary solution of Eq.~8! is given by

Pg~E!5N0e2F(E), ~16!

whereF(E)5 ln D(2)(E)2*EdE8@D(1)(E8)/D(2)(E8)# andN0 is
a normalization constant@17#. Denoting F(E)5b0A(E),
the deterministic forceG is calculated as

Gg~E!52]EA5kBT0FD (1)~E!

D (2)~E!
2

D (2)8~E!

D (2)~E!
G , ~17!

where D (1)D5^X1&, D (2)D5(^X2&2^X1&
2)/2, and D (2)8

5]D (2)(E)/]E. Notice that if the diffusion coefficientD (2)

is a constant, Eq.~17! reduces to Eq.~11!. As can be seen in

FIG. 2. ~a! The deterministic forcesG(E) of the canonical sam-
pling of (Ala)8 in an explicit water phase atT05300 K. E0

529140 kcal/mol ands0578.4 ~b! The conditional averagêX1&
and the variances(D) of the transition probability.
02111
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Fig. 1~a!, the correctedGg represented by dash-dotted op
circles shows a perfect agreement with one obtained from
derivative of the PDF. In Fig. 2~a!, we also plotted the deter
ministic forces differently calculated by Eqs.~11! and ~17!,
and the derivative of the PDF for (Ala)8 in an explicit water
phase. The coincidence ofG(E) in Fig. 2~a! demonstrates
that our basic assumption is indeed realized in a comp
system. In actual simulation, Eq.~17! has been used to de
termine the deterministic force.

B. Multicanonical sampling based on the force biased iteration
scheme

The advantage of this iteration scheme for the effect
temperature is that it enables an automatic calculation of
weight without any intervention in the simulation. The tria
to automatize the iteration procedures in the multicanon
ensemble have been also attempted in the Monte Carlo a
rithm @27#. For the automatic iteration in MD, we update
the weight only for the restricted energy window@E1

i ,E2
i #

defined by Pi(E1
i )5Pi(E2

i )50.005 at each iteration step
For the energy region ofPi(E),0.005, the deterministic
forceG i has been assumed to be zero to handle the statis
error of small sampling data. The first update of the weig
has been done after a 23105 time step in the canonical MD
at T05300 K. In the subsequent iterations, the number
sampling data has been increased to be 2(m11)3105 time
step, m being the iteration step, to maintain the statistic
accuracy of the analysis for the extended sampling ene
region.

The typical energy trajectory is plotted in Fig. 3~a!. Start-
ing from the canonical simulation atT05300 K the sam-
pling is extended to cover an entire energy range as the
eration proceeds. The PDF of each iteration step has b
also plotted in Fig. 3~b!. The uniform distribution is obtained
for an interesting energy region ati 510. To prevent the
dynamics from trapping in local minima of low temperatu
energy region, the boundary condition ofT̃(E)5T̃(E1

0) for
E,E1

055 kcal/mol has been applied. On the other hand,

set T̃(E)5T̃(E2
0) for E.E2

05150 kcal/mol. The conforma-
tional sampling has been checked by calculating the end
end distancedl defined by the distance between N of (Ala1
and O of (Ala)8. The broad distribution ofdl at i 510 con-
firms frequent transitions between the helix- and the rando
coil state. The maximum peak locating atdl

a.14 Å corre-
sponds to thea helix state.

Except for the case ofi 53, the deterministic forceG i

shows two distinct behaviors depending on the energy ra
in Fig. 4~a!. For the energy region of@E1

i 21 ,E2
i 21# sampled

by the previous (i 21)th simulation,G i becomes vanishing
with the addition of the biasing forceG i 21 to the previous
force scaling functionn i 21. Notice thatG(E).0 for all en-
ergy ranges in final iteration ofi 510. For the sampled en
ergy region of@E2

i 21 ,E2
i # in the i th simulation,G i shows a

linear relationship with respect to the energy, which is a ty
cal characteristic of the canonical sampling. In Fig. 4~b!,
both the force scaling functionn i and the effective tempera
ture T̃i are plotted with respect toE. The constant effective
0-5
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temperatureT̃051 of the canonical sampling ati 50 trans-
forms to the linear function ofT̃1(E)51/(11G0).1
2G0(E), sinceG0 is linear around the average energy. T
effective temperature is repeatedly extended to high ene
region through the subsequent transformations of

T̃i 11~E!.T̃i~E2
i 21!2G i~E!, ~18!

where G i is always negative for@E2
i 21 ,E2

i #. Notice that

FIG. 3. ~a! The energy trajectory with respect to a time step.~b!
The probability distribution functionPi(E) at each iteration step
~c! The distribution of the end-to-end distancedl at each iteration
step.
02111
gy

T̃i 11(E) does not change significantly fromT̃i for E
,E2

i 21, sinceG i.0 for that energy region.
The interesting point is that the weight determined by

simulations ofi 50;2 ~dashed lines! does not coincide with
the converged one~solid lines! obtained fromi 55;10. This
difference can be seen more clearly in a magnified view
the effective temperature in Fig. 4~c!. The inconsistency of
the weight is due to the quenching of the initial state, wh
has been prepared in a fully extended state of (Ala)8 corre-
sponding todl528.3 Å. Notice that our simulation start
from the room temperature ofT05300 K in contrast to very

FIG. 4. ~a! The deterministic forceG i(E) as a function of the
iteration i. ~b! The force scaling functionn i(E) and the effective

temperatureT̃i(E). ~c! The magnified view of the effective tem

peratureT̃i(E) for i 50;6.
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high temperature of the conventional MUCA@11,12#. The
rapid cooling of the initial state causes the system to
quenched in one of the local minima of the free-energy s
face, which can be verified by the distinguished peak ofdl*
512.1 Å in the simulation ofi 50 –2 in Fig. 4~c!. However,
the system easily escapes from the quenched state by a
ing the biased force iteratively. The effective temperatureT̃4

connecting the initial weight to the converged one represe
this transient dynamics. Also, the movement of the ma
mum peak of the end-to-end distance fromdl* to dl

a has been
observed in this transient dynamics ofi 53 of Fig. 3~c!. The
PDF andG(E) associated with the transition show a stran
behavior in Figs. 3~b! and 4~a!, which do not coincide with
the stochastic prediction. Indeed, the split ofT̃i does not
appear when we start the simulation from the well-defin
equilibrium state of 300 K.

Once the multicanonical sampling is achieved with hi
statistics, the canonical PDF at an arbitrary temperature
be obtained by the reweighting as

P0~E,T!5V~E!e2bE5Pmu~E!eb0amu(E)2bE, ~19!

wherePmu andamu correspond to the PDF and the multic
nonical potential at a final iteration, respectively. Furth
more, we can calculate various thermodynamics quantitie
any physical observableO by

^O&T5E dEO~E!P0~E,T!. ~20!

The reweighted PDF obtained from the multicanonical sim
lation at i 510 shows a good agreement with the canoni
PDF at various temperatures in Fig. 5~a!. We also plotted the
reweighted average energy^E&T with respect to the tempera
ture in Fig. 5~b!. In the previous study@15#, we demonstrated
that the multicanonical weight can be determined by inter
lating the maximum probability energy points of the cano
cal samplings at different temperatures. Indeed, the
weighted average energy exactly coincides with
multicanonical weightT̃10 in Fig. 5~b!. In the present simu-
lation, the maximum probability energy is identical to th
average energy of each canonical sampling.

Finally, we would like to mention the scalability of th
force biased iteration scheme with respect to the size of
system. We found that the convergence rate for the unifo
sampling is not significantly different from the convention
potential biasing scheme in the present (Ala)8 system. The
uniform distribution has been obtained from the 11th ite
tion by applying the iteration scheme of Eq.~3!. Since the
convergence of the iteration depends on the system it is
difficult to derive a general relation quantifying the perfo
mance as a function of the size of the system. Howeve
should be emphasized that our method allows a full au
matic determination of the weight without any interventi
in the simulation process, which would be crucial in the p
formance as the size of the system increases.
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IV. CONCLUSIONS

Based on the stochastic model of the sampling dynam
we derive the iteration scheme for the derivative of t
weight, which realizes the uniform sampling by canceli
the deterministic force iteratively in a Langevin equatio
The iteration scheme has been further transformed to g
the recursive formula for the effective temperature, allowi
full automatic calculation of the multicanonical weight with
out any intervention in the simulation. The essential dyna
ics of the sampling process has been verified in terms of
stochastic formulation of the time series data of MD by ide
tifying the Fokker-Planck equation governing the dynami
The validation of this iteration scheme has been tested in
multicanonical simulation of a helix-coil transition of th
(Ala)8 system.

ACKNOWLEDGMENTS

We thank M. S. Yukihisa Watanabe, Yoshiaki Mikam
and Takashi Kurosawa for technical supports. We ackno
edge that this work was supported by the NEDO and
METI.

FIG. 5. ~a! The solid lines represent the PDF determined by
reweighting of the multicanonical simulation ati 510. The tem-
perature ranges from 300 K to 900 K with an increment 25 K.~b!
The open squares and the solid line represent the effective tem

ture T̃10 and the reweighted average energy^E&T , respectively.
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